A quick note on business calculus "The area of a figure formed by a string of length L "

What shape has the largest area of a shape made from a string of length L? What type are triangles and rectangles? How does it compare to the circle ?

 $S = \frac{L^2}{12\sqrt{3}}$

1. For triangles: equilateral triangles have the largest area

2. For rectangles: squares have the largest area $S = \frac{L^2}{16}$

Ą

$$< ---- L/2 - x ---->$$
Assuming the length of the rope is L,

$$S = x(\frac{L}{2} - x) = \frac{1}{2}Lx - x^{2}$$

If we differentiate this $S' = \frac{L}{2} - 2x$

 $x = \frac{L}{4}$ therefore square is maximum area

$$S = \frac{L}{4}(\frac{L}{2} - \frac{L}{4}) = \frac{L^2}{16}$$

3. For circles: ^s

4. evaluation

	circumference :	L
	<u>radius : r</u>	
$S=\pi r^2$	L=2 π r r= $\frac{L}{2\pi}$	

 $S=\pi(L/2\pi)^2=L^2/4\pi$

shape	maximum area type	area	area when L=1
triangle	equilateral triangle	$S = \frac{L^2}{12\sqrt{3}}$	0.0481
rectangle	square	$S = \frac{L^2}{16}$	0.0625
circle	N/A	$S = \frac{L^2}{4\pi}$	0.0796

(1)The area increases in the order of circle > square > equilateral triangle as the angles that can be taken become larger.

②Nature is beautiful and seeks harmony, equilateral triangle for triangle, square for rectangle.