A quick note on business calculus

 "The area of a figure formed by a string of length L"
© N.Ishinabe Certified Public Tax Accountant Office

What shape has the largest area of a shape made from a string of length L? What type are triangles and rectangles? How does it compare to the circle?

1. For triangles: equilateral triangles $\quad s=\frac{L^{2}}{12 \sqrt{3}}$
have the largest area

$$
\begin{aligned}
& h=\sqrt{r^{2}-x^{2}}=\sqrt{\left(\frac{L}{2}-x\right)^{2}-x^{2}}=\sqrt{\frac{L^{2}}{4}+x^{2}-L x-x^{2}}=\sqrt{L_{4}^{2}}-\angle x \\
& s=\frac{1}{2} \cdot h \cdot x \cdot 2=h x=x \sqrt{L^{2}}{ }^{2}-L x \quad \text { To differentiate this }
\end{aligned}
$$

$$
s^{\prime}=\left(x^{\prime}\right) \sqrt{\frac{L^{2}}{4}-L x}+x\left(\sqrt{\frac{L^{2}}{4}-L x}\right)^{\prime}
$$

Assuming the length of the rope $r+r+2 x=L \quad r=L / 2-x$

$$
\begin{aligned}
& \therefore r=\frac{L}{2}-x=\frac{L}{2}-\frac{L}{6}=\frac{1}{3} L \longleftarrow \text { Equilateral triangle } \\
& S=\frac{1}{6} L \sqrt{\frac{L^{2}}{4}-\frac{1}{6} L^{2}}=\frac{1}{6} L^{2} \sqrt{\frac{1}{12}}=\frac{L^{2}}{12 \sqrt{3}}
\end{aligned}
$$

© N.Ishinabe Certified Public Tax Accountant Office
2. For rectangles: squares have the largest area $s=\frac{L^{2}}{16}$

Assuming the length of the rope is L ,

$$
S=x\left(\frac{L}{2}-x\right)=\frac{1}{2} L x-x^{2}
$$

If we differentiate this $S^{\prime}=\frac{L}{2}-2 x$

$$
\begin{aligned}
& \mathrm{x}=\frac{L}{4} \text { therefore square is maximum area } \\
& \mathrm{S}=\frac{L}{4}\left(\frac{L}{2}-\frac{L}{4}\right)=\frac{L^{2}}{16}
\end{aligned}
$$

© N.Ishinabe Certified Public Tax Accountant Office
3. For circles: $s=\frac{l^{2}}{4 \pi}$
4. evaluation

shape	maximum area type	area	area when $\mathrm{L}=1$
triangle	equilateral triangle	$\mathrm{S}=\frac{L^{2}}{12 \sqrt{3}}$	0.0481
rectangle	square	$\mathrm{S}=\frac{L^{2}}{16}$	0.0625
circle	N / A	$\mathrm{S}=\frac{L^{2}}{4 \pi}$	0.0796

(1)The area increases in the order of circle > square > equilateral triangle as the angles that can be taken become larger.
(2) Nature is beautiful and seeks harmony, equilateral triangle for triangle, square for rectangle.
© N.Ishinabe Certified Public Tax Accountant Office

